新闻中心
你的位置:主页 > 新闻中心 >

变频器在垃圾发电厂的应用

作者:cp彩票 发布时间:2019-10-28 13:30 点击:

  介绍变频器在垃圾焚烧发电厂的应用实例,介绍变频器常见故障原因处理和日常维护事项。

  火力发电厂中各种辅机为满足主机出力波动要求,多数风机和水泵的流量均需要调节,传统的调节方式为节流调节,存在反应慢、调节精度低、能耗大等问题。而变频器作为一种电能控制装置,以其调节性能优良、节能效果好等因数,已被广泛应用在电厂的风机、水泵等流量调节和速度调节中。

  引风机是电厂的重要设备,通过控制引风机的开度调节风量,维持炉膛负压在一定范围内运行。如果炉膛负压太小,炉膛容易向外喷炉内空气,既影响车间环境卫生,又可能危及设备和人员的安全;负压太大,炉膛漏风量增大,增加风机的电能消耗和烟气热量损失。因此控制引风机的开度,稳定炉膛负压,对保证锅炉的安全、经济运行具有十分重要意义。

  环能一厂机组设计出力为6MW,锅炉为机械炉排垃圾焚烧炉,引风机额定风量为95040m3/h、风压为6600Pa,所配的电动机额定功率为250KW,额定电压为380V,额定电流455A,电机调速采用ABB ACS600变频器以实现风机开度调节。

  引风机运行操作主要通过DCS控制,运行方式分为手动控制和炉膛负压PID调节自动控制两种,正常运行时,引风机出口风门挡板全开(100%指令状态),由PID调节器通过控制风机转速稳定炉膛负压。所有数字量输入、输出接口模块主要是接受外围远程控制信号,实现引风机的联锁保护、闭锁逻辑和控制功能。同时变频器还对电动机进行保护。

  垃圾焚烧电厂中所有进厂垃圾都是先存储在垃圾坑里,一般堆放约3~5天,充分发酵后才投入焚烧炉燃烧,在投入时就使用垃圾起重机将垃圾投入给料斗。

  环能一厂起重系统是由两台垃圾起重机组成,每台垃圾起重机都有独立的电动机控制系统和供操作人员使用HMI控制盘和PC机。操作方式分手动或自动以及半自动模式。其中大车电机、小车电机和提升电机均采用芬兰生产的DYNA V55F36变频器进行控制。

  起重机传统的调速方式大多为转子串电阻分级调速,在实际应用中存在以下弊端:

  1)、控制精度差。采用电动机转子串电阻调速,属于有级调速,在不同速度段的切换中存在速度跳跃,其控制比较粗糙,定位不准确。

  2)、工作可靠性不高。由于在电动机转子侧串接的电阻很多,而在分段调速过程中采用接触器短接上一级电阻,接触器的寿命主要体现在它的机械部分的寿命,常因过流使触点粘在一起,无法实现切换,进而造成超速等事故发生,严重影响系统的可靠性。

  3)、维护工作量大。由于采用接触器对电阻进行分段切换,因此必须经常对接触器进行维护,大大增加维护人员的工作强度。

  4)、耗能。电动机转子串电阻调速是一种转差功率消耗性的调速方式,在整个调速过程中,大量的电能被消耗在电阻上,非常不经济。

  5)、稳定性差。电动机转子串电阻调速,当在低速运行时,稳定性差。因为速度越低,特性越软,负载转矩波动时,引起转速变化大,使运行稳定性差。

  1)、控制精度高。能使交流电动机的调速性能与直流电动机的几乎相等,实现精确控制。

  2)、工作可靠性高。变频器采用的是电子器件,寿命长,且有完善的保护功能。

  4)、节能效果明显。特别是在提升机上,当提升机处于提升状态时,电动机处于电动状态,由于提升属恒转矩负载,其转速降低多大比例节能就为多大比例。当电动机处于下降状态时,电动机处于发电状态,将势能转化为电能。

  变频器一般具有高度的智能化水平和完善的故障检测电路,并能对所有的故障进行精确的定位,在HMI界面做出提示。在实际应用中经常遇到故障主要有光纤故障、过电压故障、缺相故障、过热故障、驱动故障等,现就这些故障发生的原因和处理方式作简要分析。

  在变频器中功率单元属于高压部分(动力部分),控制器属低压部分,为实现低压与高压隔离,已保证极高的安全性,同时控制器与功率单元有一定的安全距离,为保证在远距离信号传输中仍然具有很好的抗电磁干扰性能,控制器与功率单元之间采用光纤通信技术,光纤及光纤信号发送/接收器作为控制器与功率单元的通信介质。

  出现光纤故障时,首先需要判断是功率单元侧出现故障还是控制器侧故障,在不明确哪一侧的情况下,应在变频器断电后,根据HMI界面的故障记录用备用功率单元替换所怀疑有故障的功率单元,然后重新上电,如果故障消失则可判定属功率单元故障,如果故障依然存在则应是控制单元故障,此时应更换控制器中的光纤通信板。

  变频器过电压故障是各种功率单元内直流母线电压达到危险程度后采取的保护措施,在处理此类故障时要分析清楚故障原因,有针对性地采取相应的措施去处理。

  正常情况下,直流母线为三相交流输入线电压的峰值,即如输入为AC400V,则直流母线V。在过电压发生时,直流母线的储能电容电压将上升,但电压上升到一定值时(通常为正常值的10%~20%),变频器的过电压保护动作。

  正常情况下输入电压波动在额定电压-10%~10%以内,但是特殊情况下,电源电压波动可能过大,由于直流母线电压随电源电压上升,达到保护值时变频器就因过电压保护跳闸。电源输入侧过电压主要由于电源侧冲击过电压,如雷电引起的过电压、补偿电容在投入或退出时形成的过电压等。主要特点是电压变化率du/dt和幅值都很大,此时最好断开电源进行检查处理。

  由于某种原因使电动机处于再生发电状态,即电动机实际转速比变频器频率决定的同步转速高时,负载的传动系统所储存的机械能经电动机转换成电能,通过各个功率单元逆变桥的四个IGBT管中的续流二极管返回到直流母线,这些能量导致直流回路的电解电容的电压迅速上升引起过电压。

  其现场操作的主要处理方法是延长变频器减速时间参数,当变频器拖动大惯性负载时,由于减速时间设定过小,在减速过程中,变频器减速速度过快,而负载由于依靠其自身阻力减速的比较慢,使负载拖动电动机的速度大于变频器频率所对应的速度,电动机处于发电状态。

  有些变频器还设置防止减速过电压功能,即在减速过程中,检测直流母线电压达到一定值时,变频器的输出频率不再下降,暂缓减速,待直流母线电压下降后再继续减速,避免出现直流母线 缺相故障

  缺陷故障保护是指变频器各功率单元交流输入侧电压三相中至少有一相缺少而采取的保护,出现缺相时会引起整流模块发热、过流以及直流母线电压降低,虽然在缺相状态下设备也能继续运行,但整流桥中个别器件电流过大及电解电容的脉冲电流过大,长期运行将对变频器的寿命和可靠性造成不良影响,应及时处理。处理时应根据具体原因进行。

  变频器在运行中由于功率器件整流桥、IGBT管、移相整流变压器等自身消耗功率会散热,内部温度较高,如果热量不及时散出,长期对变频器的寿命大大降低,严重时会引起元器件损坏,功率单元过热保护主要是功率器件在一定电流下运行,器件基板的温度达到规定的温度时采取的一种保护措施,变频器元器件消耗功率主要包括通泰损耗和开关损耗,其结果使基板温度tc和半导体结温tj上升。

  IGBT是变频器最关键的功率器件,具有电流容量大、工作频率范围宽能优点。对IGBT管的保护一般都为过电流保护,即IGBT保护电路检测输出端或者直流环节的总电流,当电流超过设定值时,比较器翻转封锁所有的IGBT驱动器的输入脉冲,使输出电流降为零,同时给CPU处理器发出故障信号。

  1 变频器虽然具有较高的可靠性,但现场的维护检查也是决定设备长期稳定运行的重要因数,其日常检查主要项目如下

  新入变频器一个月后,应将主回路的电缆连接紧固;以后半年紧固一次,用吸尘器清除柜内灰尘;

  如果变频器长期未投入使用,建议半年通电一次,每次时间不少于1小时;当空气湿度较大是否也应上电,这样可以防止变频器内器件及电路板受潮,又可激活电解电容,防止变频器内的电解电容发生漏电、耐压降低的劣化现象。

  变频器运行环境要防静电和电磁干扰,湿度、温度、粉尘均需达到规定要求,盘柜所有电缆进线应封堵,运行过程不允许长时间打开柜门;

  在检查过程应注意变频器功率单元中的电容器残余电压,经充分放电后才可进行;

  不允许用绝缘电阻表测量变频器的输出绝缘,否则会使功率单元的元器件受损。

  实践证明,变频器在垃圾发电厂辅机的应用,不仅可以提高其自动化程度,同时也起到很好的节能效果。但由于垃圾发电厂自身特点(如车间含有较多的酸性和腐蚀性气体、运行调整操作频繁等)约束,在实际运行中,为确保变频器工作可靠性以及使用周期,应加强对变频器运行维护,故障时应能根据报警信息准确判断故障性质,及时采取有效措施,以便第一时间恢复生产。

  (本文选编自《电气技术》,原文标题为“垃圾发电厂变频器应用实例”,作者为陈日光。)

  (本文选编自《电气技术》,原文标题为“垃圾发电厂变频器应用实例”,作者为陈日光。)

cp彩票